4.7 Article

Extensive variation in the intelectin gene family in laboratory and wild mouse strains

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-94679-3

关键词

-

资金

  1. Common Fund of the Office of the Director of the National Institutes of Health
  2. NCI
  3. NHGRI
  4. NHLBI
  5. NIDA
  6. NIMH
  7. NINDS
  8. National Institutes of Health [U01AI125926, R37AI32738]

向作者/读者索取更多资源

Intelectins are a family of secreted proteins that bind microbe-specific glycans, playing a crucial role in innate immunity and the etiology of various human diseases. While human Intelectin-1 has multiple orthologues in mice, Intelectin-2 does not, presenting a challenge in studying their role in disease using mouse models. Laboratory mouse strains exhibit extensive diversity in intelectin genes, with some strains having a full complement of six genes while others have large deletions resulting in retention of only one gene. Wild mice also show polymorphic intelectin deletions, suggesting a pattern of birth-and-death evolution in these genes.
Intelectins are a family of multimeric secreted proteins that bind microbe-specific glycans. Both genetic and functional studies have suggested that intelectins have an important role in innate immunity and are involved in the etiology of various human diseases, including inflammatory bowel disease. Experiments investigating the role of intelectins in human disease using mouse models are limited by the fact that there is not a clear one-to-one relationship between intelectin genes in humans and mice, and that the number of intelectin genes varies between different mouse strains. In this study we show by gene sequence and gene expression analysis that human intelectin-1 (ITLN1) has multiple orthologues in mice, including a functional homologue Itln1; however, human intelectin-2 has no such orthologue or homologue. We confirm that all sub-strains of the C57 mouse strain have a large deletion resulting in retention of only one intelectin gene, Itln1. The majority of laboratory strains have a full complement of six intelectin genes, except CAST, SPRET, SKIVE, MOLF and PANCEVO strains, which are derived from different mouse species/subspecies and encode different complements of intelectin genes. In wild mice, intelectin deletions are polymorphic in Mus musculus castaneus and Mus musculus domesticus. Further sequence analysis shows that Itln3 and Itln5 are polymorphic pseudogenes due to premature truncating mutations, and that mouse Itln1 has undergone recent adaptive evolution. Taken together, our study shows extensive diversity in intelectin genes in both laboratory and wild-mice, suggesting a pattern of birth-and-death evolution. In addition, our data provide a foundation for further experimental investigation of the role of intelectins in disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据