4.7 Article

Dynamic causal modelling of immune heterogeneity

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-91011-x

关键词

-

资金

  1. Wellcome [203147/Z/16/Z, 088130/Z/09/Z]
  2. Medical Research Council doctoral studentship [D79/543369/D-OTH/170890]

向作者/读者索取更多资源

This paper introduces a model of the immune response to a virus, highlighting key hypotheses related to resistance mechanisms and conducting simple simulations to illustrate changes in immune response dynamics. The potential application of the model in testing hypotheses is demonstrated through variational inversion using simulated data.
An interesting inference drawn by some COVID-19 epidemiological models is that there exists a proportion of the population who are not susceptible to infection-even at the start of the current pandemic. This paper introduces a model of the immune response to a virus. This is based upon the same sort of mean-field dynamics as used in epidemiology. However, in place of the location, clinical status, and other attributes of people in an epidemiological model, we consider the state of a virus, B and T-lymphocytes, and the antibodies they generate. Our aim is to formalise some key hypotheses as to the mechanism of resistance. We present a series of simple simulations illustrating changes to the dynamics of the immune response under these hypotheses. These include attenuated viral cell entry, pre-existing cross-reactive humoral (antibody-mediated) immunity, and enhanced T-cell dependent immunity. Finally, we illustrate the potential application of this sort of model by illustrating variational inversion (using simulated data) of this model to illustrate its use in testing hypotheses. In principle, this furnishes a fast and efficient immunological assay-based on sequential serology-that provides a (1) quantitative measure of latent immunological responses and (2) a Bayes optimal classification of the different kinds of immunological response (c.f., glucose tolerance tests used to test for insulin resistance). This may be especially useful in assessing SARS-CoV-2 vaccines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据