4.7 Article

Survival analysis in breast cancer using proteomic data from four independent datasets

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-96340-5

关键词

-

资金

  1. Higher Education Institutional Excellence Programme of the Ministry for Innovation and Technology in Hungary, within Bionic thematic programme of the Semmelweis University [2020-4.1.1.-TKP2020]
  2. ELIXIR Hungary
  3. [2018-2.1.17-TET-KR-00001]
  4. [2020-1.1.6-JOVO-2021-00013]
  5. [2018-1.3.1-VKE-2018-00032]

向作者/读者索取更多资源

This study correlated immunohistochemical results with proteome-level technologies in identifying new prognostic biomarkers for breast cancer treatment selection. By integrating proteomic datasets and establishing a database for breast cancer patients, the study validated protein expression levels and identified candidate proteins as prognostic biomarkers. The large-scale proteomic studies provide sufficient data for validating and ranking potential protein biomarkers.
Breast cancer clinical treatment selection is based on the immunohistochemical determination of four protein biomarkers: ESR1, PGR, HER2, and MKI67. Our aim was to correlate immunohistochemical results to proteome-level technologies in measuring the expression of these markers. We also aimed to integrate available proteome-level breast cancer datasets to identify and validate new prognostic biomarker candidates. We searched studies involving breast cancer patient cohorts with published survival and proteomic information. Immunohistochemistry and proteomic technologies were compared using the Mann-Whitney test. Receiver operating characteristics (ROC) curves were generated to validate discriminative power. Cox regression and Kaplan-Meier survival analysis were calculated to assess prognostic power. False Discovery Rate was computed to correct for multiple hypothesis testing. We established a database integrating protein expression data and survival information from four independent cohorts for 1229 breast cancer patients. In all four studies combined, a total of 7342 unique proteins were identified, and 1417 of these were identified in at least three datasets. ESR1, PGR, and HER2 protein expression levels determined by RPPA or LC-MS/MS methods showed a significant correlation with the levels determined by immunohistochemistry (p < 0.0001). PGR and ESR1 levels showed a moderate correlation (correlation coefficient = 0.17, p= 0.0399). An additional panel of candidate proteins, including apoptosis-related proteins (BCL2,), adhesion markers (CDH1, CLDN3, CLDN7) and basal markers (cytokeratins), were validated as prognostic biomarkers. Finally, we expanded our previously established web tool designed to validate survival-associated biomarkers by including the proteomic datasets analyzed in this study (https://kmplot.com/). In summary, large proteomic studies now provide sufficient data enabling the validation and ranking of potential protein biomarkers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据