4.7 Article

Impact of rescanning and repositioning on radiomic features employing a multi-object phantom in magnetic resonance imaging

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41598-021-93756-x

关键词

-

资金

  1. Projekt DEAL
  2. LOEWE Center Frankfurt Cancer Institute (FCI) - Hessen State Ministry for Higher Education, Research and the Arts [III L 5 -519/03/03.001 -(0015)]

向作者/读者索取更多资源

The study analyzed the robustness and reproducibility of MRI radiomic features, finding that shape features were the most robust class and T2 map was the most robust imaging technique with high robustness and discriminative power.
Our purpose was to analyze the robustness and reproducibility of magnetic resonance imaging (MRI) radiomic features. We constructed a multi-object fruit phantom to perform MRI acquisition as scan-rescan using a 3 Tesla MRI scanner. We applied T2-weighted (T2w) half-Fourier acquisition single-shot turbo spin-echo (HASTE), T2w turbo spin-echo (TSE), T2w fluid-attenuated inversion recovery (FLAIR), T2 map and T1-weighted (T1w) TSE. Images were resampled to isotropic voxels. Fruits were segmented. The workflow was repeated by a second reader and the first reader after a pause of one month. We applied PyRadiomics to extract 107 radiomic features per fruit and sequence from seven feature classes. We calculated concordance correlation coefficients (CCC) and dynamic range (DR) to obtain measurements of feature robustness. Intraclass correlation coefficient (ICC) was calculated to assess intra- and inter-observer reproducibility. We calculated Gini scores to test the pairwise discriminative power specific for the features and MRI sequences. We depict Bland Altmann plots of features with top discriminative power (Mann-Whitney U test). Shape features were the most robust feature class. T2 map was the most robust imaging technique (robust features (rf), n=84). HASTE sequence led to the least amount of rf (n=20). Intra-observer ICC was excellent (>= 0.75) for nearly all features (max-min; 99.1-97.2%). Deterioration of ICC values was seen in the inter-observer analyses (max-min; 88.7-81.1%). Complete robustness across all sequences was found for 8 features. Shape features and T2 map yielded the highest pairwise discriminative performance. Radiomics validity depends on the MRI sequence and feature class. T2 map seems to be the most promising imaging technique with the highest feature robustness, high intra-/inter-observer reproducibility and most promising discriminative power.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据