4.7 Article

Rapid and real-time monitoring of bacterial growth against antibiotics in solid growth medium using a contactless planar microwave resonator sensor

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-94139-y

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC) [RGPIN-2018-04288]
  2. Canada Foundation for Innovation (CFI) program [38148]
  3. CMC Microsystems
  4. Department of National Defence

向作者/读者索取更多资源

This research proposes a novel method that combines microwave resonators with disk diffusion AST for rapid, contactless, and non-invasive antibiotic susceptibility testing. By monitoring the effect of antibiotics on E. coli, the sensor provides decisive results of antibiotic susceptibility in under 6 hours.
Infection diagnosis and antibiotic susceptibility testing (AST) are pertinent clinical microbiology practices that are in dire need of improvement, due to the inadequacy of current standards in early detection of bacterial response to antibiotics and affordability of contemporarily used methods. This paper presents a novel way to conduct AST which hybridizes disk diffusion AST with microwave resonators for rapid, contactless, and non-invasive sensing and monitoring. In this research, the effect of antibiotic (erythromycin) concentrations on test bacterium, Escherichia coli (E. coli) cultured on solid agar medium (MH agar) are monitored through employing a microwave split-ring resonator. A one-port microwave resonator operating at a 1.76 GHz resonant frequency, featuring a 5 mm(2) sensitive sensing region, was designed and optimized to perform this. Upon introducing uninhibited growth of the bacteria, the sensor measured 0.005 dB/hr, with a maximum change of 0.07 dB over the course of 15 hours. The amplitude change decreased to negligible values to signify inhibited growth of the bacteria at higher concentrations of antibiotics, such as a change of 0.005 dB in resonant amplitude variation while using 45 mu g of antibiotic. Moreover, this sensor demonstrated decisive results of antibiotic susceptibility in under 6 hours and shows great promise to expand automation to the intricate AST workflow in clinical settings, while providing rapid, sensitive, and non-invasive detection capabilities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据