4.5 Article

DREADDs suppress seizure-like activity in a mouse model of pharmacoresistant epileptic brain tissue

期刊

GENE THERAPY
卷 23, 期 10, 页码 760-766

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/gt.2016.56

关键词

-

资金

  1. Swedish Research Council [2012-2258]
  2. EPITARGET: FP7-HEALTH project [602102]

向作者/读者索取更多资源

Epilepsy is a neurological disorder with a prevalence of approximate to 1% of general population. Available antiepileptic drugs (AEDs) have multiple side effects and are ineffective in 30% of patients. Therefore, development of effective treatment strategies is highly needed, requiring drug-screening models that are relevant and reliable. We investigated novel chemogenetic approach, using DREADDs (designer receptors exclusively activated by designer drugs) as possible inhibitor of epileptiform activity in organotypic hippocampal slice cultures (OHSCs). The OHSCs are characterized by increased overall excitability and closely resemble features of human epileptic tissue. Studies suggest that chemically induced epileptiform activity in rat OHSCs is pharmacoresistant to most of AEDs. However, high-frequency electric stimulus train-induced bursting (STIB) in OHSCs is responsive to carbamazepine and phenytoin. We investigated whether inhibitory DREADD, hM4Di, would be effective in suppressing STIB in OHSC. hM4Di is a mutated muscarinic receptor selectively activated by otherwise inert clozapine-N-oxide, which leads to hyperpolarization in neurons. We demonstrated that this hyperpolarization effectively suppresses STIB in mouse OHSCs. As we also found that STIB in mouse OHSCs is resistant to common AED, valproic acid, collectively our findings suggest that DREADD-based strategy may be effective in suppressing epileptiform activity in a pharamcoresitant epileptic brain tissue.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据