4.7 Article

A Proton-Coupled Transport System for β-Hydroxy-β-Methylbutyrate (HMB) in Blood-Brain Barrier Endothelial Cell Line hCMEC/D3

期刊

NUTRIENTS
卷 13, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/nu13093220

关键词

beta-hydroxy-beta-methylbutyrate; MCT1 (SLC16A1); MCT4 (SLC16A3); LAT1 (SLC7A5); mTOR; blood-brain barrier

资金

  1. Abbott Nutrition
  2. Welch Endowed Chair in Biochemistry at Texas Tech University Health Sciences Center [BI-0028]

向作者/读者索取更多资源

HMB can enter human BBB endothelial cells through H+-coupled monocarboxylate transporters, leading to intracellular acidification and mTOR activation causing changes in transporter expression, especially positively affecting LAT1.
beta-Hydroxy-beta-methylbutyrate (HMB), a leucine metabolite, is used as a nutritional ingredient to improve skeletal muscle health. Preclinical studies indicate that this supplement also elicits significant benefits in the brain; it promotes neurite outgrowth and prevents age-related reductions in neuronal dendrites and cognitive performance. As orally administered HMB elicits these effects in the brain, we infer that HMB crosses the blood-brain barrier (BBB). However, there have been no reports detailing the transport mechanism for HMB in BBB. Here we show that HMB is taken up in the human BBB endothelial cell line hCMEC/D3 via H+-coupled monocarboxylate transporters that also transport lactate and beta-hydroxybutyrate. MCT1 (monocarboxylate transporter 1) and MCT4 (monocarboxylate transporter 4) belonging to the solute carrier gene family SLC16 (solute carrier, gene family 16) are involved, but additional transporters also contribute to the process. HMB uptake in BBB endothelial cells results in intracellular acidification, demonstrating cotransport with H+. Since HMB is known to activate mTOR with potential to elicit transcriptomic changes, we examined the influence of HMB on the expression of selective transporters. We found no change in MCT1 and MCT4 expression. Interestingly, the expression of LAT1 (system L amino acid transporter 1), a high-affinity transporter for branched-chain amino acids relevant to neurological disorders such as autism, is induced. This effect is dependent on mTOR (mechanistic target of rapamycine) activation by HMB with no involvement of histone deacetylases. These studies show that HMB in systemic circulation can cross the BBB via carrier-mediated processes, and that it also has a positive influence on the expression of LAT1, an important amino acid transporter in the BBB.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据