4.6 Article

Pathways to Green Perspectives: Production and Characterization of Polylactide (PLA) Nanocomposites Filled with Superparamagnetic Magnetite Nanoparticles

期刊

MATERIALS
卷 14, 期 18, 页码 -

出版社

MDPI
DOI: 10.3390/ma14185154

关键词

biopolymers; poly(lactic acid); PLA; nanocomposites; magnetite (Fe3O4); reactive surface treatment; melt-compounding; thermal and morphology characterizations; superparamagnetic properties

资金

  1. EUROPEAN COMMISSION [3192]
  2. WALLONIA REGION [3192]

向作者/读者索取更多资源

The addition of nanofillers to polylactic acid can improve its properties and achieve specific end-use characteristics. These polymer nanocomposites exhibit strong magnetization properties and are suitable for various applications.
In the category of biopolymers, polylactide or polylactic acid (PLA) is one of the most promising candidates considered for future developments, as it is not only biodegradable under industrial composting conditions, but it is produced from renewable natural resources. The modification of PLA through the addition of nanofillers is considered as a modern approach to improve its main characteristic features (mechanical, thermal, barrier, etc.) and to obtain specific end-use properties. Iron oxide nanoparticles (NPs) of low dimension (10-20 nm) such as magnetite (Fe3O4), exhibit strong magnetization in magnetic field, are biocompatible and show low toxicity, and can be considered in the production of polymer nanocomposites requiring superparamagnetic properties. Accordingly, PLA was mixed by melt-compounding with 4-16 wt.% magnetite NPs. Surface treatment of NPs with a reactive polymethylhydrogensiloxane (MHX) was investigated to render the nanofiller water repellent, less sensitive to moisture and to reduce the catalytic effects at high temperature of iron (from magnetite) on PLA macromolecular chains. The characterization of nanocomposites was focused on the differences of the rheology and morphology, modification, and improvements in the thermal properties using surface treated NPs, while the superparamagnetic behavior was confirmed by VSM (vibrating sample magnetometer) measurements. The PLA-magnetite nanocomposites had strong magnetization properties at low magnetic field (values close to 70% of M-max at H = 0.2 T), while the maximum magnetic signal (M-max) was mainly determined by the loading of the nanofiller, without any significant differences linked to the surface treatment of MNPs. These bionanocomposites showing superparamagnetic properties, close to zero magnetic remanence, and coercivity, can be further produced at a larger scale by melt-compounding and can be designed for special end-use applications, going from biomedical to technical areas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据