4.6 Article

Influence of Ti3C2Tx MXene and Surface-Modified Ti3C2Tx MXene Addition on Microstructure and Mechanical Properties of Silicon Carbide Composites Sintered via Spark Plasma Sintering Method

期刊

MATERIALS
卷 14, 期 13, 页码 -

出版社

MDPI
DOI: 10.3390/ma14133558

关键词

composites; silicon carbide; CMCs; MXene; Ti3C2Tx; sol-gel method; mechanical properties

资金

  1. National Science Centre [UMO-2017/25/B/ST8/01205]

向作者/读者索取更多资源

This study shows that adding MXene phases can significantly improve the mechanical properties of silicon carbide, especially fracture toughness. Surface modification using a Y2O3/Al2O3 oxide mixture enhances the interface quality, leading to enhanced mechanical properties of the composites.
This article presents new findings related to the problem of the introduction of MXene phases into the silicon carbide matrix. The addition of MXene phases, as shown by the latest research, can significantly improve the mechanical properties of silicon carbide, including fracture toughness. Low fracture toughness is one of the main disadvantages that significantly limit its use. As a part of the experiment, two series of composites were produced with the addition of 2D-Ti3C2Tx MXene and 2D-Ti3C2Tx surface-modified MXene with the use of the sol-gel method with a mixture of Y2O3/Al2O3 oxides. The composites were obtained with the powder metallurgy technique and sintered with the Spark Plasma Sintering method at 1900 degrees C. The effect adding MXene phases had on the mechanical properties and microstructure of the produced sinters was investigated. Moreover, the influence of the performed surface modification on changes in the properties of the produced composites was determined. The analysis of the obtained results showed that during sintering, the MXene phases oxidize with the formation of carbon flakes playing the role of reinforcement. The influence of the Y2O3/Al2O3 layer on the structure of carbon flakes and the higher quality of the interface was also demonstrated. This was reflected in the higher mechanical properties of composites with the addition of modified Ti3C2Tx. Composites with 1 wt.% addition of Ti3C2Tx M are characterized with a fracture toughness of 5 MPa x m(0.5), which is over 50% higher than in the case of the reference sample and over 15% higher than for the composite with 2.5 wt.% addition of Ti3C2Tx, which showed the highest fracture toughness in this series.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据