4.6 Article

Heat Transfer in Straw-Based Thermal Insulating Materials

期刊

MATERIALS
卷 14, 期 16, 页码 -

出版社

MDPI
DOI: 10.3390/ma14164408

关键词

natural fibers; raw barley and wheat straw; heat transfer; thermal conductivity; porosity; physical properties

资金

  1. Blue Planet Foundation, Research Work Scholarship Fund

向作者/读者索取更多资源

An analytic-empirical model was developed to describe heat transfer process in raw straw bulks based on laboratory experiments, testing two different straw types and achieving good agreement between the model and measured thermal conductivities. Optimal bulk densities of two different straw types were found to be similar, with the model considering factors such as solid conduction, gas conduction, and radiation.
An analytic-empirical model was developed to describe the heat transfer process in raw straw bulks based on laboratory experiments for calculating the thermal performance of straw-based walls and thermal insulations. During the tests, two different types of straw were investigated. The first was barley, which we used to compose our model and identify the influencing model parameters, and the second was wheat straw, which was used only for validation. Both straws were tested in their raw, natural bulks without any modification except drying. We tested the thermal conductivity of the materials in a bulk density range between 80 and 180 kg/m(3) as well as the stem density, material density, cellulose content, and porosity. The proposed model considers the raw straw stems as natural composites that contain different solids and gas phases that are connected in parallel to each other. We identified and separated the following thermal conductivity factors: solid conduction, gas conduction in stem bulks with conduction factors for pore gas, void gas, and gaps among stems, as well as radiation. These factors are affected by the type of straw and their bulk density. Therefore, we introduced empirical flatness and reverse flatness factors to our model, describing the relationship between heat conduction in stems and voids to bulk density using the geometric parameters of undisturbed and compressed stems. After the validation, our model achieved good agreement with the measured thermal conductivities. As an additional outcome of our research, the optimal bulk densities of two different straw types were found to be similar at 120 kg/m(3).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据