4.6 Article

CASZ1 loss-of-function mutation associated with congenital heart disease

期刊

GENE
卷 595, 期 1, 页码 62-68

出版社

ELSEVIER
DOI: 10.1016/j.gene.2016.09.044

关键词

Congenital heart disease; Genetics; Transcription factor; CASZ1; Reporter gene assay

资金

  1. National Natural Science Foundation of China [81470372, 81270161, 81400244, 81271927]
  2. key program for Basic Research of Shanghai, China [14JC1405500]
  3. Shanghai Chest Hospital, China [2014YZDH10102, 2014YZDH20500]

向作者/读者索取更多资源

As the most common form of birth defect in humans, congenital heart disease (CHD) is associated with substantial morbidity and mortality in both children and adults. Increasing evidence demonstrates that genetic defects play a pivotal role in the pathogenesis of CHD. However, CHD is of great heterogeneity, and in an overwhelming majority of cases, the genetic determinants underpinning CHD remain elusive. In the present investigation, the coding exons and flanking introns of the CASZ1 gene, which codes for a zinc finger transcription factor essential for the cardiovascular morphogenesis, were sequenced in 172 unrelated patients with CHD. As a result, a novel heterozygous CASZ1 mutation, p.L38P, was identified in an index patient with congenital ventricular septal defect (VSD). Genetic scanning of the mutation carrier's available family members revealed that the mutation was present in all affected patients but absent in unaffected individuals. Analysis of the proband's pedigree showed that the mutation co-segregated with VSD, which was transmitted as an autosomal dominant trait with complete penetrance. The missense mutation, which altered the amino acid that was highly conserved evolutionarily, was absent in 200 unrelated, ethnically-matched healthy subjects used as controls. Functional deciphers by using a dual-luciferase reporter assay system unveiled that the mutant CASZ1 had significantly reduced transcriptional activity as compared with its wild-type counterpart. To the best of our knowledge, the current study firstly identifies CASZ1 as a new gene predisposing to CHD in humans, which provides novel insight into the molecular mechanisms underlying CHD and a potential therapeutic target for CASZ1-associated CHD, suggesting potential implications for personalized prophylaxis and therapy of CHD. (C) 2016 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据