4.5 Review

The impact of mitochondria on cancer treatment resistance

期刊

CELLULAR ONCOLOGY
卷 44, 期 5, 页码 983-995

出版社

SPRINGER
DOI: 10.1007/s13402-021-00623-y

关键词

Mitochondria; Treatment resistance; Mitochondrial transfer; Fumarate; 2-Hydroxyglutarate

资金

  1. Cancer Association of South Africa (CANSA)
  2. National Research Foundation (NRF)
  3. Medical Research Council (MRC) of South Africa

向作者/读者索取更多资源

Research has shown that mitochondria play a significant role in promoting treatment resistance in cancer cells, such as through mutations leading to the accumulation of oncometabolites, or stromal cells providing intact mitochondria to restore function. Targeting mitochondria may be an effective strategy to mitigate treatment resistance.
Background The ability of cancer cells to develop treatment resistance is one of the primary factors that prevent successful treatment. Although initially thought to be dysfunctional in cancer, mitochondria are significant players that mediate treatment resistance. Literature indicates that cancer cells reutilize their mitochondria to facilitate cancer progression and treatment resistance. However, the mechanisms by which the mitochondria promote treatment resistance have not yet been fully elucidated. Conclusions and perspectives Here, we describe various means by which mitochondria can promote treatment resistance. For example, mutations in tricarboxylic acid (TCA) cycle enzymes, i.e., fumarate hydratase and isocitrate dehydrogenase, result in the accumulation of the oncometabolites fumarate and 2-hydroxyglutarate, respectively. These oncometabolites may promote treatment resistance by upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, inhibiting the anti-tumor immune response, or promoting angiogenesis. Furthermore, stromal cells can donate intact mitochondria to cancer cells after therapy to restore mitochondrial functionality and facilitate treatment resistance. Targeting mitochondria is, therefore, a feasible strategy that may dampen treatment resistance. Analysis of tumoral DNA may also be used to guide treatment choices. It will indicate whether enzymatic mutations are present in the TCA cycle and, if so, whether the mutations or their downstream signaling pathways can be targeted. This may improve treatment outcomes by inhibiting treatment resistance or promoting the effectiveness of anti-angiogenic agents or immunotherapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据