4.6 Article

New sustainable chemically modified chitosan derivatives for different applications: Synthesis and characterization

期刊

ARABIAN JOURNAL OF CHEMISTRY
卷 14, 期 8, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.arabjc.2021.103255

关键词

Chitosan; Terephthaloyl chloride; Nanoparticles; Congo Red; Antimicrobial activity

向作者/读者索取更多资源

The new chitosan derivatives hydrogels and NPs formulations prepared under different reaction conditions showed high water swelling, dye adsorption capacity, and antimicrobial activity.
The functionalization of chitosan (CS) by terephthaloyl chloride (TPC), glutaraldehyde (GA), and 4(4-(ethyl carbamoyl) benzoyl chloride) benzene sulfonamide was performed under different reaction conditions to yield the new hydrogels (I, II, III) respectively. However, hydrogel (I NPs) was prepared from reaction of chitosan with (TPC) via ionic gelation technique using sodium tripolyphosphate (TPP) as a cross-linker. Moreover, hydrogel (I) was loaded (Au, Ag and ZnO) nanoparticles to give the nanoformulations (I-Au NPs, I-Ag NPs and I-ZnO NPs) respectively. Structural and morphological analysis of the new chitosan derivatives hydrogels and NPs formulations were characterized by FTIR, elemental analysis, TGA, DSC, XRD, SEM and TEM. From swelling study, chitosan derivatives hydrogels revealed higher swelling degree compared to (CS) with increasing time, temperature and pH values which reached maximum at pH 7 then decreased at pH 10. In addition, the maximum sorption capacities of Congo Red (CR) in aqueous solution were in the range 81-88%. Moreover, adsorption equilibrium isotherm results displayed favorable Langmuir model than Freundlich model. Furthermore, chitosan derivatives hydrogels showed broad spectrum antimicrobial activities against Gram-negative bacteria, Gram-positive bacteria and fungi with the inhibition zone diameter ranged from 13 to 25 mm compared to (CS) hydrogel which revealed inhibition zone diameter ranged from 11 to 16 mm, especially the nano formulation hydrogel (I-Ag NPs) showed the highest antimicrobial activity. The results were promising suggest- ing that the new modified chitosan derivatives could be potential for dye removal and as antimicro- bial agents. (c) 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据