4.8 Article

Life-Cycle Assessment Considerations for Batteries and Battery Materials

期刊

ADVANCED ENERGY MATERIALS
卷 11, 期 33, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202100771

关键词

carbon footprint; environmental impacts; life-cycle assessments; lithium-ion batteries

资金

  1. Energy & Biosciences Institute (EBI)
  2. U.S. Department of Energy (DOE) Office of Science, Advanced Manufacturing Office, Office of Electricity
  3. Office of Energy Efficiency and Renewable Energy's Strategic Analysis Team [DE-AC02-05CH11231]

向作者/读者索取更多资源

Rechargeable batteries are crucial for energy system decarbonization, but there is still no consensus on the environmental impacts of producing them. Future studies should focus on long-term trends in resource depletion, non-compliant extraction practices, and various battery manufacturing scales.
Rechargeable batteries are necessary for the decarbonization of the energy systems, but life-cycle environmental impact assessments have not achieved consensus on the environmental impacts of producing these batteries. Nonetheless, life cycle assessment (LCA) is a powerful tool to inform the development of better-performing batteries with reduced environmental burden. This review explores common practices in lithium-ion battery LCAs and makes recommendations for how future studies can be more interpretable, representative, and impactful. First, LCAs should focus analyses of resource depletion on long-term trends toward more energy and resource-intensive material extraction and processing rather than treating known reserves as a fixed quantity being depleted. Second, future studies should account for extraction and processing operations that deviate from industry best-practices and may be responsible for an outsized share of sector-wide impacts, such as artisanal cobalt mining. Third, LCAs should explore at least 2-3 battery manufacturing facility scales to capture size- and throughput-dependent impacts such as dry room conditioning and solvent recovery. Finally, future LCAs must transition away from kg of battery mass as a functional unit and instead make use of kWh of storage capacity and kWh of lifetime energy throughput.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据