4.8 Article

The impact of site-specific digital histology signatures on deep learning model accuracy and bias

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-24698-1

关键词

-

资金

  1. NIH/NIDCR [K08-DE026500]
  2. NCI [U01CA243075]
  3. Adenoid Cystic Carcinoma Research Foundation
  4. Cancer Research Foundation
  5. American Cancer Society
  6. NIH/NCI [1P20-CA233307]

向作者/读者索取更多资源

Deep learning models trained on TCGA can predict various features directly from histology, but site-specific histologic signatures may introduce bias into the accuracy estimates of these models.
The Cancer Genome Atlas (TCGA) is one of the largest biorepositories of digital histology. Deep learning (DL) models have been trained on TCGA to predict numerous features directly from histology, including survival, gene expression patterns, and driver mutations. However, we demonstrate that these features vary substantially across tissue submitting sites in TCGA for over 3,000 patients with six cancer subtypes. Additionally, we show that histologic image differences between submitting sites can easily be identified with DL. Site detection remains possible despite commonly used color normalization and augmentation methods, and we quantify the image characteristics constituting this site-specific digital histology signature. We demonstrate that these site-specific signatures lead to biased accuracy for prediction of features including survival, genomic mutations, and tumor stage. Furthermore, ethnicity can also be inferred from site-specific signatures, which must be accounted for to ensure equitable application of DL. These site-specific signatures can lead to overoptimistic estimates of model performance, and we propose a quadratic programming method that abrogates this bias by ensuring models are not trained and validated on samples from the same site. Deep learning models have been trained on The Cancer Genome Atlas to predict numerous features directly from histology, including survival, gene expression patterns, and driver mutations. Here, the authors demonstrate that site-specific histologic signatures can lead to biased estimates of accuracy for such models, and propose a method to minimize such bias.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据