4.8 Article

Generation of mature compact ventricular cardiomyocytes from human pluripotent stem cells

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-021-23329-z

关键词

-

资金

  1. BlueRock Therapeutics
  2. Ted Rogers Center for Heart Research

向作者/读者索取更多资源

The study established a differentiation strategy for generating structurally, metabolically, and functionally mature compact ventricular cardiomyocytes from human pluripotent stem cells. These cardiomyocytes exhibited metabolic changes indicative of heart failure when challenged with pathological stimuli.
Compact cardiomyocytes that make up the ventricular wall of the adult heart represent an important therapeutic target population for modeling and treating cardiovascular diseases. Here, we established a differentiation strategy that promotes the specification, proliferation and maturation of compact ventricular cardiomyocytes from human pluripotent stem cells (hPSCs). The cardiomyocytes generated under these conditions display the ability to use fatty acids as an energy source, a high mitochondrial mass, well-defined sarcomere structures and enhanced contraction force. These ventricular cells undergo metabolic changes indicative of those associated with heart failure when challenged in vitro with pathological stimuli and were found to generate grafts consisting of more mature cells than those derived from immature cardiomyocytes following transplantation into infarcted rat hearts. hPSC-derived atrial cardiomyocytes also responded to the maturation cues identified in this study, indicating that the approach is broadly applicable to different subtypes of the heart. Collectively, these findings highlight the power of recapitulating key aspects of embryonic and postnatal development for generating therapeutically relevant cell types from hPSCs. Cardiomyocytes of heart ventricles consist of subpopulations of trabecular and compact subtypes. Here the authors describe the generation of structurally, metabolically and functionally mature compact ventricular cardiomyocytes as well as mature atrial cardiomyocytes from human pluripotent stem cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据