4.8 Article

NEK9 regulates primary cilia formation by acting as a selective autophagy adaptor for MYH9/myosin IIA

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-23599-7

关键词

-

资金

  1. Exploratory Research for Advanced Technology [JPMJER1702]
  2. Japan Science and Technology Agency

向作者/读者索取更多资源

This study demonstrates that NEK9 interacts with MYH9 to regulate ciliogenesis, with NEK9's LIR playing a key role in the autophagic degradation of MYH9. This interaction may have adaptive implications for terrestrial life, given the conservation of NEK9's LIR only in land vertebrates.
Autophagy regulates primary cilia formation, but the underlying mechanism is not fully understood. In this study, we identify NIMA-related kinase 9 (NEK9) as a GABARAPs-interacting protein and find that NEK9 and its LC3-interacting region (LIR) are required for primary cilia formation. Mutation in the LIR of NEK9 in mice also impairs in vivo cilia formation in the kidneys. Mechanistically, NEK9 interacts with MYH9 (also known as myosin IIA), which has been implicated in inhibiting ciliogenesis through stabilization of the actin network. MYH9 accumulates in NEK9 LIR mutant cells and mice, and depletion of MYH9 restores ciliogenesis in NEK9 LIR mutant cells. These results suggest that NEK9 regulates ciliogenesis by acting as an autophagy adaptor for MYH9. Given that the LIR in NEK9 is conserved only in land vertebrates, the acquisition of the autophagic regulation of the NEK9-MYH9 axis in ciliogenesis may have possible adaptive implications for terrestrial life. Ciliogenesis is a tightly regulated process, although the role of selective autophagy is unclear. Here, the authors show NIMA-related kinase 9 controls actin network stabilization and subsequently ciliogenesis by targeting myosin MYH9 for autophagic degradation via GABARAP interaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据