4.8 Article

Mattertronics for programmable manipulation and multiplex storage of pseudo-diamagnetic holes and label-free cells

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-021-23251-4

关键词

-

资金

  1. National Research Foundation of Korea [2018R1A5A1025511]
  2. Samsung Research Funding Center of Samsung Electronics [SRFC-MA1402-01]
  3. Max Planck Society

向作者/读者索取更多资源

A pseudo-diamagnetophoresis mattertronic approach is proposed for programmable manipulation of single label-free cells, where cells are moved along linear negative micromagnetic patterns, switched at eclipse diode patterns and stored in potential wells in biocompatible ferrofluids.
Manipulating and separating single label-free cells without biomarker conjugation have attracted significant interest in the field of single-cell research, but digital circuitry control and multiplexed individual storage of single label-free cells remain a challenge. Herein, by analogy with the electrical circuitry elements and electronical holes, we develop a pseudo-diamagnetophoresis (PsD) mattertronic approach in the presence of biocompatible ferrofluids for programmable manipulation and local storage of single PsD holes and label-free cells. The PsD holes conduct along linear negative micro-magnetic patterns. Further, eclipse diode patterns similar to the electrical diode can implement directional and selective switching of different PsD holes and label-free cells based on the diode geometry. Different eclipse heights and junction gaps influence the switching efficiency of PsD holes for mattertronic circuitry manipulation and separation. Moreover, single PsD holes are stored at each potential well as in an electrical storage capacitor, preventing multiple occupancies of PsD holes in the array of individual compartments due to magnetic Coulomb-like interaction. This approach may enable the development of large programmable arrays of label-free matters with high throughput, efficiency, and reliability as multiplex cell research platforms. Here, the authors present a pseudo-diamagnetophoresis mattertronic approach for programmable manipulation of label-free cells. Immersed in biocompatible ferrofluids, single cells are moved along linear negative micromagnetic patterns, switched at eclipse diode patterns and stored in potential wells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据