4.8 Article

Liquid flow reversibly creates a macroscopic surface charge gradient

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-021-24270-x

关键词

-

资金

  1. Max Planck Graduate Center
  2. Johannes Gutenberg University Mainz (MPGC)
  3. Dutch Ministry of Education, Culture and Science (OCW)

向作者/读者索取更多资源

Research shows how liquid flow affects the charging and dissolution rates of mineral surfaces in contact with flowing liquids, leading to flow-dependent charge gradients along the surface.
The charging and dissolution of mineral surfaces in contact with flowing liquids are ubiquitous in nature, as most minerals in water spontaneously acquire charge and dissolve. Mineral dissolution has been studied extensively under equilibrium conditions, even though non-equilibrium phenomena are pervasive and substantially affect the mineral-water interface. Here we demonstrate using interface-specific spectroscopy that liquid flow along a calcium fluoride surface creates a reversible spatial charge gradient, with decreasing surface charge downstream of the flow. The surface charge gradient can be quantitatively accounted for by a reaction-diffusion-advection model, which reveals that the charge gradient results from a delicate interplay between diffusion, advection, dissolution, and desorption/adsorption. The underlying mechanism is expected to be valid for a wide variety of systems, including groundwater flows in nature and microfluidic systems. Reactions at the interface between mineral surfaces and flowing liquids are ubiquitous in nature. Here the authors explore, using surface-specific sum frequency generation spectroscopy and numeric calculations, how the liquid flow affects the charging and dissolution rates leading to flow-dependent charge gradients along the surface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据