4.8 Article

Xanthomonas effector XopR hijacks host actin cytoskeleton via complex coacervation

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-24375-3

关键词

-

资金

  1. NTU startup grant [M4081533]
  2. MOE Tier 1 [RG32/20]
  3. MOE Tier 3 in Singapore [MOE2019-T3-1-012]

向作者/读者索取更多资源

The study reveals a mechanism by which bacterial T3Es subvert the host actin cytoskeleton through liquid-liquid phase separation, providing insight into the sophisticated strategies pathogens use to manipulate host cell processes.
The intrinsically disordered region (IDR) is a preserved signature of phytobacterial type III effectors (T3Es). The T3E IDR is thought to mediate unfolding during translocation into the host cell and to avoid host defense by sequence diversification. Here, we demonstrate a mechanism of host subversion via the T3E IDR. We report that the Xanthomonas campestris T3E XopR undergoes liquid-liquid phase separation (LLPS) via multivalent IDR-mediated interactions that hijack the Arabidopsis actin cytoskeleton. XopR is gradually translocated into host cells during infection and forms a macromolecular complex with actin-binding proteins at the cell cortex. By tuning the physical-chemical properties of XopR-complex coacervates, XopR progressively manipulates multiple steps of actin assembly, including formin-mediated nucleation, crosslinking of F-actin, and actin depolymerization, which occurs through competition for actin-depolymerizing factor and depends on constituent stoichiometry. Our findings unravel a sophisticated strategy in which bacterial T3E subverts the host actin cytoskeleton via protein complex coacervation. Bacterial pathogens can subvert host cell processes through secreted proteins but the precise mechanisms and repertoire of proteins remains unclear. Here the authors report that a bacterial effector protein of Xanthomonas campestris, XopR, undergoes liquid-liquid phase separation to hijack the host cell actin cytoskeleton.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据