4.8 Article

The Great Oxygenation Event as a consequence of ecological dynamics modulated by planetary change

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-23286-7

关键词

-

资金

  1. John Templeton Foundation [61443]

向作者/读者索取更多资源

The Great Oxygenation Event (GOE) 2.4 billion years ago is believed to have been critical for the evolution of complex life. The authors propose a model suggesting that competition between major bacterial groups could have triggered the GOE in a feedback loop with geophysical processes.
The Great Oxygenation Event (GOE), ca. 2.4 billion years ago, transformed life and environments on Earth. Its causes, however, are debated. We mathematically analyze the GOE in terms of ecological dynamics coupled with a changing Earth. Anoxygenic photosynthetic bacteria initially dominate over cyanobacteria, but their success depends on the availability of suitable electron donors that are vulnerable to oxidation. The GOE is triggered when the difference between the influxes of relevant reductants and phosphate falls below a critical value that is an increasing function of the reproductive rate of cyanobacteria. The transition can be either gradual and reversible or sudden and irreversible, depending on sources and sinks of oxygen. Increasing sources and decreasing sinks of oxygen can also trigger the GOE, but this possibility depends strongly on migration of cyanobacteria from privileged sites. Our model links ecological dynamics to planetary change, with geophysical evolution determining the relevant time scales. The Great Oxygenation Event (GOE) 2.4 billion years ago is believed to have been critical for the evolution of complex life. Here, Olejarz et al. propose a model suggesting that competition between major bacterial groups could have triggered the GOE in a feedback loop with geophysical processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据