4.8 Article

Dynamics of the compartmentalized Streptomyces chromosome during metabolic differentiation

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-25462-1

关键词

-

向作者/读者索取更多资源

The linear chromosome structure of Streptomyces bacteria is linked to genetic compartmentalization, and the onset of metabolic differentiation involves rearrangement of chromosome architecture.
Bacteria of the genus Streptomyces are prolific producers of specialized metabolites, including antibiotics. The linear chromosome includes a central region harboring core genes, as well as extremities enriched in specialized metabolite biosynthetic gene clusters. Here, we show that chromosome structure in Streptomyces ambofaciens correlates with genetic compartmentalization during exponential phase. Conserved, large and highly transcribed genes form boundaries that segment the central part of the chromosome into domains, whereas the terminal ends tend to be transcriptionally quiescent compartments with different structural features. The onset of metabolic differentiation is accompanied by a rearrangement of chromosome architecture, from a rather 'open' to a 'closed' conformation, in which highly expressed specialized metabolite biosynthetic genes form new boundaries. Thus, our results indicate that the linear chromosome of S. ambofaciens is partitioned into structurally distinct entities, suggesting a link between chromosome folding, gene expression and genome evolution. Streptomyces bacteria have a linear chromosome, with core genes located in the central region and gene clusters for specialized metabolite biosynthesis found in the 'arms'. Here, Lioy et al. show that such chromosome structure correlates with genetic compartmentalization, and the onset of metabolic differentiation is accompanied by a rearrangement of chromosome architecture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据