4.8 Article

An electronic neuromorphic system for real-time detection of high frequency oscillations (HFO) in intracranial EEG

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-23342-2

关键词

-

资金

  1. Swiss National Science Foundation [SNSF 320030_176222]
  2. European Research Council (ERC) under the European Union [724295]

向作者/读者索取更多资源

The study introduces an embedded device that can process intracranial EEG from epilepsy patients to detect High Frequency Oscillations in real-time. By utilizing mixed-signal neuromorphic circuits, a neural network processing system achieves state-of-the-art accuracy, sensitivity, and specificity in HFO detection.
The analysis of biomedical signals for clinical studies and therapeutic applications can benefit from embedded devices that can process these signals locally and in real-time. An example is the analysis of intracranial EEG (iEEG) from epilepsy patients for the detection of High Frequency Oscillations (HFO), which are a biomarker for epileptogenic brain tissue. Mixed-signal neuromorphic circuits offer the possibility of building compact and low-power neural network processing systems that can analyze data on-line in real-time. Here we present a neuromorphic system that combines a neural recording headstage with a spiking neural network (SNN) processing core on the same die for processing iEEG, and show how it can reliably detect HFO, thereby achieving state-of-the-art accuracy, sensitivity, and specificity. This is a first feasibility study towards identifying relevant features in iEEG in real-time using mixed-signal neuromorphic computing technologies. A major challenge across a variety of fields is how to process the vast quantities of data produced by sensors without large computation resources. Here, the authors present a neuromorphic chip which can detect a relevant signature of epileptogenic tissue from intracranial recordings in patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据