4.8 Article

Protein interface redesign facilitates the transformation of nanocage building blocks to 1D and 2D nanomaterials

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-25199-x

关键词

-

资金

  1. National Natural Science Foundation of China [31972018, 31730069]

向作者/读者索取更多资源

The authors describe a protein interface redesign strategy for the self-assembly transformation of dimeric building blocks from hollow protein nanocage to filament, nanorod and nanoribbon. By adjusting the geometric arrangement of dimeric proteins, they demonstrate the potential to generate different protein materials in response to multiple external stimuli. This approach could lead to a deeper understanding of protein assembly and enable the construction of novel protein nanoarchitectures.
Various strategies to assemble protein building blocks into one-, two- and three-dimensional hierarchical nanostructures were described, but controlling the transformation between those different assemblies is largely uninvestigated. Here, the authors describe a protein interface redesign strategy and use it for the self-assembly transformation of dimeric building blocks from hollow protein nanocage to filament, nanorod and nanoribbon. Although various artificial protein nanoarchitectures have been constructed, controlling the transformation between different protein assemblies has largely been unexplored. Here, we describe an approach to realize the self-assembly transformation of dimeric building blocks by adjusting their geometric arrangement. Thermotoga maritima ferritin (TmFtn) naturally occurs as a dimer; twelve of these dimers interact with each other in a head-to-side manner to generate 24-meric hollow protein nanocage in the presence of Ca2+ or PEG. By tuning two contiguous dimeric proteins to interact in a fully or partially side-by-side fashion through protein interface redesign, we can render the self-assembly transformation of such dimeric building blocks from the protein nanocage to filament, nanorod and nanoribbon in response to multiple external stimuli. We show similar dimeric protein building blocks can generate three kinds of protein materials in a manner that highly resembles natural pentamer building blocks from viral capsids that form different protein assemblies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据