4.8 Article

Reactive wear protection through strong and deformable oxide nanocomposite surfaces

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-25778-y

关键词

-

资金

  1. European Union's Horizon 2020 Research and Innovation Programme [958457-FORGE]
  2. Deutsche Forschungsgemeinschaft (German Research Foundation) [SPP 2006]
  3. National Science Foundation of China [51971248]
  4. Deutsche Forschungsgemeinschaft [HE 7225/1-1]

向作者/读者索取更多资源

The authors present a 'reactive wear protection' strategy to achieve superior wear resistance through the in situ formation of strong and deformable oxide nanocomposites on a surface induced by friction. This strategy offers a pathway for designing ultra-wear resistant alloys by turning brittle oxides into strong and deformable surfaces for improving wear resistance.
Wear-resistant metals have long been a pursuit of reducing wear-related energy and material loss. Here the authors present the 'reactive wear protection' strategy via friction-induced in situ formation of strong and deformable oxide nanocomposites on a surface. Wear-related energy and material loss cost over 2500 Billion Euro per year. Traditional wisdom suggests that high-strength materials reveal low wear rates, yet, their plastic deformation mechanisms also influence their wear performance. High strength and homogeneous deformation behavior, which allow accommodating plastic strain without cracking or localized brittle fracture, are crucial for developing wear-resistant metals. Here, we present an approach to achieve superior wear resistance via in-situ formation of a strong and deformable oxide nanocomposite surface during wear, by reaction of the metal surface with its oxidative environment, a principle that we refer to as 'reactive wear protection'. We design a TiNbZr-Ag alloy that forms an amorphous-crystalline oxidic nanocomposite surface layer upon dry sliding. The strong (2.4 GPa yield strength) and deformable (homogeneous deformation to 20% strain) nanocomposite surface reduces the wear rate of the TiNbZr-Ag alloy by an order of magnitude. The reactive wear protection strategy offers a pathway for designing ultra-wear resistant alloys, where otherwise brittle oxides are turned to be strong and deformable for improving wear resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据