4.8 Article

Design of carbon supports for metal-catalyzed acetylene hydrochlorination

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-021-24330-2

关键词

-

资金

  1. ETH research grant [ETH-40 17-1]
  2. GV [PROMETEO/2018/076]

向作者/读者索取更多资源

This study identifies the crucial roles of carbon in determining the activity and stability of hydrochlorination catalysts, with acetylene adsorption capacity and density of acidic oxygen sites being central descriptors for optimal performance.
For decades, carbons have been the support of choice in acetylene hydrochlorination, a key industrial process for polyvinyl chloride manufacture. However, no unequivocal design criteria could be established to date, due to the complex interplay between the carbon host and the metal nanostructure. Herein, we disentangle the roles of carbon in determining activity and stability of platinum-, ruthenium-, and gold-based hydrochlorination catalysts and derive descriptors for optimal host design, by systematically varying the porous properties and surface functionalization of carbon, while preserving the active metal sites. The acetylene adsorption capacity is identified as central activity descriptor, while the density of acidic oxygen sites determines the coking tendency and thus catalyst stability. With this understanding, a platinum single-atom catalyst is developed with stable catalytic performance under two-fold accelerated deactivation conditions compared to the state-of-the-art system, marking a step ahead towards sustainable PVC production. Carbons are indispensable as supports for metal-based catalysts in polyvinyl chloride manufacture via acetylene hydrochlorination. In this work, the acetylene interaction, tunable through adjusting microporosity and oxygen sites is identified as central activity and stability descriptor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据