4.8 Article

Motional narrowing, ballistic transport, and trapping of room-temperature exciton polaritons in an atomically-thin semiconductor

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-25656-7

关键词

-

资金

  1. Australian Research Council (ARC) Centre of Excellence [CE170100039]
  2. Foundation for Polish Science (FNP) in the START programme
  3. European Research Council (ERC) within the project UnLimit2D [679288]

向作者/读者索取更多资源

Room-temperature exciton polaritons in a monolayer WS2 exhibit narrow linewidth and enhanced coherence, capable of propagating over tens of micrometers with partial coherence and displaying ballistic transport characteristics. When interacting with cavity photons in optical microcavities, excitons in TMDCs can form exciton polaritons with inherited useful properties.
Room-temperature exciton polaritons in a monolayer WS2 are shown to display strong motional narrowing of the linewidth and enhanced first-order coherence. They can propagate for tens of micrometers while maintaining partial coherence, and display signatures of ballistic (dissipationless) transport. Monolayer transition metal dichalcogenide crystals (TMDCs) hold great promise for semiconductor optoelectronics because their bound electron-hole pairs (excitons) are stable at room temperature and interact strongly with light. When TMDCs are embedded in an optical microcavity, excitons can hybridise with cavity photons to form exciton polaritons, which inherit useful properties from their constituents. The ability to manipulate and trap polaritons on a microchip is critical for applications. Here, we create a non-trivial potential landscape for polaritons in monolayer WS2, and demonstrate their trapping and ballistic propagation across tens of micrometers. We show that the effects of dielectric disorder, which restrict the diffusion of WS2 excitons and broaden their spectral resonance, are dramatically reduced for polaritons, leading to motional narrowing and preserved partial coherence. Linewidth narrowing and coherence are further enhanced in the trap. Our results demonstrate the possibility of long-range dissipationless transport and efficient trapping of TMDC polaritons in ambient conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据