4.8 Article

Critical angle reflection imaging for quantification of molecular interactions on glass surface

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-23730-8

关键词

-

资金

  1. National Institute of General Medical Sciences of the National Institutes of Health [R01GM124335]

向作者/读者索取更多资源

CAR imaging is a novel method for quantifying molecular interactions on a glass surface, offering deeper sensing range and tunable sensitivity compared to SPR. It is also compatible with a broader spectrum of light and fluorescence.
Quantification of molecular interactions on a surface is typically achieved via label-free techniques such as surface plasmon resonance (SPR). The sensitivity of SPR originates from the characteristic that the SPR angle is sensitive to the surface refractive index change. Analogously, in another interfacial optical phenomenon, total internal reflection, the critical angle is also refractive index dependent. Therefore, surface refractive index change can also be quantified by measuring the reflectivity near the critical angle. Based on this concept, we develop a method called critical angle reflection (CAR) imaging to quantify molecular interactions on glass surface. CAR imaging can be performed on SPR imaging setups. Through a side-by-side comparison, we show that CAR is capable of most molecular interaction measurements that SPR performs, including proteins, nucleic acids and cell-based detections. In addition, we show that CAR can detect small molecule bindings and intracellular signals beyond SPR sensing range. CAR exhibits several distinct characteristics, including tunable sensitivity and dynamic range, deeper vertical sensing range, fluorescence compatibility, broader wavelength and polarization of light selection, and glass surface chemistry. We anticipate CAR can expand SPR ' s capability in small molecule detection, whole cell-based detection, simultaneous fluorescence imaging, and broader conjugation chemistry. Here, the authors present a method for quantifying molecular interactions on a glass surface, based on measuring surface refractive index changes via the reflectivity near the critical angle. They demonstrate tunable sensitivity and dynamic range, deep vertical sensing range, also for intracellular signals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据