4.8 Article

Asymmetric Rydberg blockade of giant excitons in Cuprous Oxide

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-021-23852-z

关键词

-

资金

  1. Carlsberg Foundation through the 'Semper Ardens' Research Project QCooL
  2. DFG through [316133134, 316159498, 316214921, TRR 160, 249492093, SPP 1929]
  3. DFG
  4. TU Dortmund University
  5. European Commission [800942]
  6. DNRF through a Niels Bohr Professorship
  7. DNRF Center of Excellence CCQ [DNRF156]
  8. NSF
  9. Smithsonian Astrophysical Observatory

向作者/读者索取更多资源

Researchers demonstrated the generation and control of strong exciton interactions in cuprous oxide semiconductors by producing two distinct quantum states of Rydberg excitons through two-color pump-probe experiments. This led to the emergence of strong spatial correlations and an inter-state Rydberg blockade over remarkably large distances. The semiconductor excitons exhibited universal properties dependent on the interaction potential shape, indicating vastly extended-range and power-law character.
The ability to generate and control strong long-range interactions via highly excited electronic states has been the foundation for recent breakthroughs in a host of areas, from atomic and molecular physics to quantum optics and technology. Rydberg excitons provide a promising solid-state realization of such highly excited states, for which record-breaking orbital sizes of up to a micrometer have indeed been observed in cuprous oxide semiconductors. Here, we demonstrate the generation and control of strong exciton interactions in this material by optically producing two distinct quantum states of Rydberg excitons. This is made possible by two-color pump-probe experiments that allow for a detailed probing of the interactions. Our experiments reveal the emergence of strong spatial correlations and an inter-state Rydberg blockade that extends over remarkably large distances of several micrometers. The generated many-body states of semiconductor excitons exhibit universal properties that only depend on the shape of the interaction potential and yield clear evidence for its vastly extended-range and power-law character. Previous research showed the existence of Rydberg excitons with large principle quantum numbers in Cu2O. Here, by using two-color pump-probe optical spectroscopy, the authors demonstrate the generation and control of long-range correlations between these giant Rydberg excitons, leading to exciton blockade.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据