4.8 Article

Evading strength-corrosion tradeoff in Mg alloys via dense ultrafine twins

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-24939-3

关键词

-

资金

  1. National Natural Science Foundation of China [51871032, 52071039]
  2. Natural Science Foundation of Jiangsu Province [BK20202010]
  3. Ministry of Education [B16007]
  4. City University of Hong Kong Strategic Research Grant (SRG) [7005264]

向作者/读者索取更多资源

The study demonstrates that ultrafine grained Mg alloys with dense twins exhibit high strength and reduced corrosion rate compared to conventional ultrafine grains, achieved through a carefully designed multi-directional compression treatment refining grain size down to 300nm. This technique not only decreases micro-galvanic corrosion tendency, but also completely suppresses severe localized corrosion.
Conventional ultrafine-grains can generate high strength in Mg alloys, but significant tradeoff of corrosion resistance due to inclusion of a large number of non-equilibrium grain boundaries. Herein, an ultrafine-grain structure consisting of dense ultrafine twins is prepared, yielding a high strength up to 469MPa and decreasing the corrosion rate by one order of magnitude. Generally, the formation of dense ultrafine twins in Mg alloys is rather difficult, but a carefully designed multi-directional compression treatment effectively stimulates twinning nucleation within twins and refines grain size down to 300nm after 12-passes compressions. Grain-refinement by low-energy twins not only circumvents the detrimental effects of non-equilibrium grain boundaries on corrosion resistance, but also alters both the morphology and distribution of precipitates. Consequently, micro-galvanic corrosion tendency decreases, and severe localized corrosion is suppressed completely. This technique has a high commercial viability as it can be readily implemented in industrial production. Conventional ultrafine grains can generate high-strength Mg alloys, but non-equilibrium grain boundaries deteriorates their corrosion resistance. Here, the authors present ultrafine grained Mg alloys with dense twins that display high strength and reduced corrosion rate by one order of magnitude.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据