4.8 Article

Global health effects of future atmospheric mercury emissions

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-021-23391-7

关键词

-

资金

  1. National Natural Science Foundation of China (NNSFC) [41875148]
  2. Chinese Academy of Science Interdisciplinary Innovation Team [JCTD-2020-20]
  3. Jiangsu Innovative and Entrepreneurial Talents Plan
  4. Collaborative Innovation Center of Climate Change, Jiangsu Province

向作者/读者索取更多资源

Mercury, a neurotoxin and pollutant, is projected to have reduced emissions due to policy efforts such as the Minamata Convention. A comprehensive global model developed in this study predicts significant health and economic impacts if emission reduction actions are delayed as required by the Convention.
Mercury is a potent neurotoxin that poses health risks to the global population. Anthropogenic mercury emissions to the atmosphere are projected to decrease in the future due to enhanced policy efforts such as the Minamata Convention, a legally-binding international treaty entered into force in 2017. Here, we report the development of a comprehensive climate-atmosphere-land-ocean-ecosystem and exposure-risk model framework for mercury and its application to project the health effects of future atmospheric emissions. Our results show that the accumulated health effects associated with mercury exposure during 2010-2050 are $19 (95% confidence interval: 4.7-54) trillion (2020 USD) realized to 2050 (3% discount rate) for the current policy scenario. Our results suggest a substantial increase in global human health cost if emission reduction actions are delayed. This comprehensive modeling approach provides a much-needed tool to help parties to evaluate the effectiveness of Hg emission controls as required by the Minamata Convention. Mercury is a neurotoxin and pollutant with enhanced emissions from anthropogenic activities. Here, the authors develop a global emissions, transport, and human risk model and find substantial future losses in revenue and public health if emission reductions proposed by the Minamata Convention are delayed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据