4.8 Article

Preventing post-surgical cardiac adhesions with a catechol-functionalized oxime hydrogel

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-021-24104-w

关键词

-

资金

  1. National Heart, Lung, and Blood Institute of the National Institutes of Health [U54HL119893]
  2. NIH/NCATS UCSD CTRI [1UL1TR001442-01]
  3. American Heart Association postdoctoral fellowship
  4. NIH NHLBI pre-doctoral fellowships [F31HL136082]

向作者/读者索取更多资源

The study presents a catechol functionalized hydrogel as an anti-adhesion material with improved retention on the heart, which is biocompatible and biodegradable with minimal swelling, demonstrating its potential application in vivo.
Post-surgical cardiac adhesions represent a significant problem during routine cardiothoracic procedures. This fibrous tissue can impair heart function and inhibit surgical access in reoperation procedures. Here, we propose a hydrogel barrier composed of oxime crosslinked poly(ethylene glycol) (PEG) with the inclusion of a catechol (Cat) group to improve retention on the heart for pericardial adhesion prevention. This three component system is comprised of aldehyde (Ald), aminooxy (AO), and Cat functionalized PEG mixed to form the final gel (Ald-AO-Cat). Ald-AO-Cat has favorable mechanical properties, degradation kinetics, and minimal swelling, as well as superior tissue retention compared to an initial Ald-AO gel formulation. We show that the material is cytocompatible, resists cell adhesion, and led to a reduction in the severity of adhesions in an in vivo rat model. We further show feasibility in a pilot porcine study. The Ald-AO-Cat hydrogel barrier may therefore serve as a promising solution for preventing post-surgical cardiac adhesions. Postsurgical adhesions are a problem during routine cardiothoracic procedures. Here, the authors report on a catechol functionalised hydrogel as an anti-adhesion material with improved retention on the heart which is biocompatible and biodegradable with minimal swelling, demonstrating application in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据