4.8 Article

FtsZ induces membrane deformations via torsional stress upon GTP hydrolysis

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-021-23387-3

关键词

-

资金

  1. DFG (Deutsche Forschungsgemeinschaft) [Transregio CRC 174]
  2. Spanish Government [BFU2016-75471-C2-1-P, 2019AEP088]
  3. Federal Ministry of Education and Research of Germany [031A359A]

向作者/读者索取更多资源

FtsZ protein plays a crucial role in bacterial cell division by self-organizing and deforming membranes through torsional stress, potentially generating enough force to constrict membranes both in vivo and in vitro. This may provide insights into the mechanisms of cell division.
FtsZ is a key component in bacterial cell division, being the primary protein of the presumably contractile Z ring. In vivo and in vitro, it shows two distinctive features that could so far, however, not be mechanistically linked: self-organization into directionally treadmilling vortices on solid supported membranes, and shape deformation of flexible liposomes. In cells, circumferential treadmilling of FtsZ was shown to recruit septum-building enzymes, but an active force production remains elusive. To gain mechanistic understanding of FtsZ dependent membrane deformations and constriction, we design an in vitro assay based on soft lipid tubes pulled from FtsZ decorated giant lipid vesicles (GUVs) by optical tweezers. FtsZ filaments actively transform these tubes into spring-like structures, where GTPase activity promotes spring compression. Operating the optical tweezers in lateral vibration mode and assigning spring constants to FtsZ coated tubes, the directional forces that FtsZ-YFP-mts rings exert upon GTP hydrolysis can be estimated to be in the pN range. They are sufficient to induce membrane budding with constricting necks on both, giant vesicles and E.coli cells devoid of their cell walls. We hypothesize that these forces result from torsional stress in a GTPase activity dependent manner. During bacterial cell division, the protein FtsZ is the main component of the contractile ring, though how precisely FtsZ treadmilling and its ability to deform membranes cooperate are unclear. Here, the authors show that dynamic FtsZ may deform lipid membranes via torsional stress that may provide sufficient force to constrict membranes in vivo and in vitro.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据