4.4 Article

Identification of differentially expressed genes using microarray analysis and COL6A1 induction of bone metastasis in non-small cell lung cancer

期刊

ONCOLOGY LETTERS
卷 22, 期 4, 页码 -

出版社

SPANDIDOS PUBL LTD
DOI: 10.3892/ol.2021.12954

关键词

NSCLC; bone metastasis; gene microarray

类别

向作者/读者索取更多资源

In this study, differentially expressed genes in NSCLC tissues with or without bone metastases were identified, with COL6A1 being chosen as the target gene. Functional experiments demonstrated that overexpression of COL6A1 promoted the proliferation and invasion of NSCLC cells, while knockdown inhibited these processes. Moreover, COL6A1 also affected the adhesion ability of cancer cells to osteoblasts. These findings suggest that COL6A1 may serve as a potential diagnostic marker and therapeutic target for bone metastasis in NSCLC.
Non-small cell lung cancer (NSCLC) is a major cause of cancer-associated mortality worldwide, and bone metastasis is the most prevalent event observed in patients with advanced NSCLC. However, the pathogenesis of bone metastases has not been fully elucidated. In the present study, differentially expressed genes (DEGs) were identified by gene expression microarray analysis of NSCLC tissue samples with or without bone metastases. Subsequently, collagen type 6A1 (COL6A1) was chosen as the target gene through Ingenuity Pathway Analysis and reverse transcription-quantitative (RT-q) PCR validation of the top eight DEGs. COL6A1 was overexpressed or knocked down, and the proliferation and invasion of NSCLC cells was assessed using Cell Counting Kit-8, colony formation and Transwell invasion assays. Additionally, the osteogenic capacity of HOB and hES-MP 002.5 cells was assessed using RT-qPCR, western blotting, Alizarin Red and alkaline phosphatase staining. A total of 364 DEGs were identified in NSCLC tissues with bone metastases compared with NSCLC tissues without bone metastases, including 140 upregulated and 224 downregulated genes. Gene Ontology analysis results demonstrated that the upregulated and downregulated genes were primarily enriched in 'cellular process', 'metabolic process' and 'biological regulation'. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that the upregulated genes were primarily enriched in 'cysteine and methionine metabolism', 'oxidative phosphorylation' and 'ribosome', whereas the downregulated genes were primarily enriched in the 'transcriptional misregulation in cancer', 'ribosome' and 'mitophagy-animal' pathways. COL6A1 was highly expressed in NSCLC tissue samples with bone metastases. Functionally, COL6A1 overexpression induced the proliferation and invasion of HARA cells, and its knockdown inhibited the proliferation and invasion of HARA-B4 cells. Finally, it was demonstrated that HOB and hES-MP 002.5 cells exhibited osteogenic capacity, and overexpression of COL6A1 in HARA cells increased the adhesion of these cells to the osteoblasts, whereas knockdown of COL6A1 in HARA-B4 cells reduced their adhesive ability. In conclusion, COL6A1 may serve as a potential diagnostic marker and therapeutic target for bone metastasis in NSCLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据