4.7 Article

Direct Observation of Electrically Conductive Pili Emanating from Geobacter sulfurreducens

期刊

MBIO
卷 12, 期 4, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/mBio.02209-21

关键词

Geobacter; cytochromes; electromicrobiology; microbial nanowires; pili

资金

  1. National Science Foundation [NSF-DMREF-1921839]

向作者/读者索取更多资源

Geobacter sulfurreducens serves as a model microbe for studying extracellular electron transfer in various biogeochemical cycles, bioelectrochemical applications, and microbial metal corrosion. Recent research has shown that electrically conductive pili (e-pili) are abundant filaments in G. sulfurreducens and are essential for long-range electron transport. These findings provide important insights into the role of e-pili in facilitating extracellular electron transfer processes.
Geobacter sulfurreducens is a model microbe for elucidating the mechanisms for extracellular electron transfer in several biogeochemical cycles, bioelectrochemical applications, and microbial metal corrosion. Multiple lines of evidence previously suggested that electrically conductive pili (e-pili) are an essential conduit for long-range extracellular electron transport in G. sulfurreducens. However, it has recently been reported that G. sulfurreducens does not express e-pili and that filaments comprised of multi-heme c-type cytochromes are responsible for long-range electron transport. This possibility was directly investigated by examining cells, rather than filament preparations, with atomic force microscopy. Approximately 90% of the filaments emanating from wild-type cells had a diameter (3 nm) and conductance consistent with previous reports of e-pili harvested from G. sulfurreducens or heterologously expressed in Escherichia coli from the G. sulfurreducens pilin gene. The remaining 10% of filaments had a morphology consistent with filaments comprised of the c-type cytochrome OmcS. A strain expressing a modified pilin gene designed to yield poorly conductive pili expressed 90% filaments with a 3-nm diameter, but greatly reduced conductance, further indicating that the 3-nm diameter conductive filaments in the wild-type strain were e-pili. A strain in which genes for five of the most abundant outer-surface c-type cytochromes, including OmcS, were deleted yielded only 3-nm-diameter filaments with the same conductance as in the wild type. These results demonstrate that e-pili are the most abundant conductive filaments expressed by G. sulfurreducens, consistent with previous functional studies demonstrating the need for e-pili for long-range extracellular electron transfer. IMPORTANCE Electroactive microbes have significant environmental impacts, as well as applications in bioenergy and bioremediation. The composition, function, and even existence of electrically conductive pili (e-pili) has been one of the most contentious areas of investigation in electromicrobiology, in part because e-pili offer a mechanism for long-range electron transport that does not involve the metal cofactors common in much of biological electron transport. This study demonstrates that e-pili are abundant filaments emanating from Geobacter sulfurreducens, which serves as a model for long-range extracellular electron transfer in direct interspecies electron transfer, dissimilatory metal reduction, microbe-electrode exchange, and corrosion caused by direct electron uptake from Fe(0). The methods described in this study provide a simple strategy for evaluating the distribution of conductive filaments throughout the microbial world with an approach that avoids artifactual production and/or enrichment of filaments that may not be physiologically relevant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据