4.7 Article

Soft but Not Too Soft-How a Rigid Tube Expands without Breaking

期刊

MBIO
卷 12, 期 3, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/mBio.00501-21

关键词

Aspergillus nidulans; Neurospora; fungi; polar growth

向作者/读者索取更多资源

The study reveals the differences in growth mechanisms between fast-growing fungi and slow-growing fungi, indicating a tradeoff between hyphal plasticity and growth speed.
Fungi grow by apical extension of their hyphae. The continuous growth requires constant delivery of vesicles, which fuse with the membrane and secrete cell wall biosynthesis enzymes. The growth mechanism requires the fungal cytoskeleton and turgor pressure. In a recent study by Fukuda et al. (mBio 12:e03196-20, 2021, https://doi.org/10.1128/mBio.03196-20), hyphal growth was studied in micro fluidic devices with channels smaller than the hyphal diameter. The authors discovered that fast-growing fungi like Neurospora crassa enter the channels, but hyphal tips become fragile and rupture frequently, whereas slower-growing fungi like Aspergillus nidulans adapt their hyphal diameter and grow without problems through the channels. This study suggests two different growth mechanisms and a tradeoff between hyphal plasticity and growth speed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据