4.6 Article

Label-Free Visualization and Quantification of Biochemical Markers of Atherosclerotic Plaque Progression Using Intravascular Fluorescence Lifetime

期刊

JACC-CARDIOVASCULAR IMAGING
卷 14, 期 9, 页码 1832-1842

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jcmg.2020.10.004

关键词

atherosclerosis; coronary artery disease; imaging; inflammation; lipids and cholesterol; percutaneous coronary intervention; ultrasonography; ultrasound

资金

  1. National Institutes of Health [R01-HL67377, R01-HL105993]

向作者/读者索取更多资源

OBJECTIVES This study aimed to systematically investigate whether plaque autofluorescence properties assessed with intravascular fluorescence lifetime imaging (FLIm) can provide qualitative and quantitative information about intimal composition and improve the characterization of atherosclerosis lesions. BACKGROUND Despite advances in cardiovascular diagnostics, the analytic tools and imaging technologies currently available have limited capabilities for evaluating in situ biochemical changes associated with luminal surface features. Earlier studies of small number of samples have shown differences among the autofluorescence lifetime signature of well-defined lesions, but a systematic pixel-level evaluation of fluorescence signatures associated with various histological features is lacking and needed to better understand the origins of fluorescence contrast. METHODS Human coronary artery segments (n = 32) were analyzed with a bimodal catheter system combining multispectral Film with intravascular ultrasonography compatible with in vivo coronary imaging. Various histological components present along the luminal surface (200-mu m depth) were systematically tabulated (12 sectors) from each serial histological section (n = 204). Morphological information provided by ultrasonography allowed for the accurate registration of imaging data with histology data. The relationships between histological findings and FLIm parameters obtained from 3 spectral channels at each measurement location (n = 33,980) were characterized. RESULTS Our findings indicate that fluorescence lifetime from different spectral bands can be used to quantitatively predict the superficial presence of macrophage foam cells (mFCs) (area under the receiver-operator characteristic curve: 0.94) and extraceltular lipid content in advanced lesions (lifetime increase in 540-nm band), detect superficial calcium (lifetime decrease in 450-nm band area under the receiver-operator characteristic curve: 0.90), and possibly detect lesions consistent with active plaque formation such as pathological intimal thickening and healed thrombus regions (lifetime increase in 390-nm band). CONCLUSIONS Our findings indicate that autofluorescence lifetime provides valuable information for characterizing atherosclerotic lesions in coronary arteries. Specifically, FLIm can be used to identify key phenomena linked with plaque progression (e.g., peroxidized-lipid-rich mFC accumulation and recent plaque formation). (C) 2021 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据