4.7 Article

Deterministic assembly of chromosome ensembles in a programmable membrane trap array

期刊

BIOFABRICATION
卷 13, 期 4, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1758-5090/ac1258

关键词

chromosome manipulation; droplet; synthetic biology

资金

  1. FLEX Award from the Center for Cancer Research (CCR)
  2. National Cancer Institute (NCI) of the U.S. National Institutes of Health (NIH)
  3. Intramural Research Program of the NIH
  4. U.S. National Science Foundation (NSF) [CMMI1562468, CBET1844299]

向作者/读者索取更多资源

This technology presents selective spatial isolation and manipulation of single chromosomes, controlled formation of defined chromosome ensembles through a droplet-based microfluidic system. By combining discretization, optical interrogation, and selective droplet release, efficient manipulation of multiple chromosomes into a defined ensemble is achieved.
Selective spatial isolation and manipulation of single chromosomes and the controlled formation of defined chromosome ensembles in a droplet-based microfluidic system is presented. The multifunctional microfluidic technology employs elastomer valves and membrane displacement traps to support deterministic manipulation of individual droplets. Picoliter droplets are formed in the 2D array of microscale traps by self-discretization of a nanoliter sample plug, with membranes positioned over each trap allowing controllable metering or full release of selected droplets. By combining discretization, optical interrogation, and selective droplet release for sequential delivery to a downstream merging zone, the system enables efficient manipulation of multiple chromosomes into a defined ensemble with single macromolecule resolution. Key design and operational parameters are explored, and co-compartmentalization of three chromosome pairs is demonstrated as a first step toward formation of precisely defined chromosome ensembles for applications in genetic engineering and synthetic biology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据