4.4 Article

Novel factors that activate and deactivate cardiac fibroblasts: A new perspective for treatment of cardiac fibrosis

期刊

WOUND REPAIR AND REGENERATION
卷 29, 期 4, 页码 667-677

出版社

WILEY
DOI: 10.1111/wrr.12947

关键词

cardiac fibroblast; extracellular matrix; extracellular matrix; Hippo signalling; mechanical stress; myofibroblast; myofibroblast deactivation; PDGFR alpha; periostin; SKI

资金

  1. Heart and Stroke Foundation of Canada [G-17-0018631]
  2. Institute of Circulatory and Respiratory Health [PJT-162163]
  3. Research Manitoba
  4. University of Manitoba (UMGF)
  5. St. Boniface Hospital Research Foundation

向作者/读者索取更多资源

Heart disease with cardiac fibrosis is a leading cause of death in developed countries, surpassing cancer. Recent literature focuses on activating and deactivating mechanisms of cardiac fibroblasts. Activated fibroblasts contribute to acute wound healing and chronic fibrosis, while deactivation is less studied but shows potential therapeutic implications.
Heart disease with attendant cardiac fibrosis kills more patients in developed countries than any other disease, including cancer. We highlight the recent literature on factors that activate and also deactivate cardiac fibroblasts. Activation of cardiac fibroblasts results in myofibroblasts phenotype which incorporates aSMA to stress fibres, express ED-A fibronectin, elevated PDGFR alpha and are hypersecretory ECM components. These cells facilitate both acute wound healing (infarct site) and chronic cardiac fibrosis. Quiescent fibroblasts are associated with normal myocardial tissue and provide relatively slow turnover of the ECM. Deactivation of activated myofibroblasts is a much less studied phenomenon. In this context, SKI is a known negative regulator of TGFb(1)/Smad signalling, and thus may share functional similarity to PPAR gamma activation. The discovery of SKI's potent anti-fibrotic role, and its ability to deactivate and/or myofibroblasts is featured and contrasted with PPAR gamma. While myofibroblasts are typically recruited from pools of potential precursor cells in a variety of organs, the importance of activation of resident cardiac fibroblasts has been recently emphasised. Myofibroblasts deposit ECM components at an elevated rate and contribute to both systolic and diastolic dysfunction with attendant cardiac fibrosis. A major knowledge gap exists as to specific proteins that may signal for fibroblast deactivation. As SKI may be a functionally pluripotent protein, we suggest that it serves as a scaffold to proteins other than R-Smads and associated Smad signal proteins, and thus its anti-fibrotic effects may extend beyond binding R-Smads. While cardiac fibrosis is causal to heart failure, the treatment of cardiac fibrosis is hampered by the lack of availability of effective pharmacological anti-fibrotic agents. The current review will provide an overview of work highlighting novel factors which cause fibroblast activation and deactivation to underscore putative therapeutic avenues for improving disease outcomes in cardiac patients with fibrosed hearts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据