4.8 Article

Molecular insight into the variation of dissolved organic phosphorus in a wastewater treatment plant

期刊

WATER RESEARCH
卷 203, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2021.117529

关键词

Dissolved organic phosphorous (DOP); FT-ICR MS; Wastewater treatment plant; Biological treatment; Tertiary treatment

资金

  1. National Natural Science Foundation of China [51908531, 51738012, 51825804, 51821006]
  2. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

The study used FT-ICR MS to uncover the variation of DOP in a WWTP, showing that biological treatment processes could effectively remove DOP species while also producing new ones.
To date, eutrophication becomes a great concern of vulnerable aquatic systems. Dissolved organic phosphorus (DOP) discharged from wastewater treatment plant (WWTP) holds a large source of phosphorus in receiving water. However, due to the complexity of DOP, their variation and fate in WWTP remain unknown at the molecular level, and are always overlooked. Here, the variation of DOP in a WWTP was uncovered via Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). Results show that 95% of DOP in the influent could be removed by the secondary biological treatment processes. The removed DOP species were mainly lipids with the molecular characteristics of low oxygen content, low unsaturation and low aromaticity. Meanwhile, during biological treatments, some new DOP species, especially lignin/carboxylic rich alicyclic molecules (CRAM) that possessed high oxygen content, high unsaturation and high aromaticity, were produced and released into the secondary effluent. In the subsequent tertiary treatment, coagulation by aluminum salt tended to remove high molecular weight and high oxygen content DOP species in the secondary effluent, which was complementary to the biological treatment. However, the sand filter usually retained microorganisms, which would result in the generation of new DOP species in this process. During the final ultraviolet disinfection process, DOP was effectively mineralized to phosphate, especially the species with high molecular weight and highly unsaturated aromatic DOP species (e.g., lignin/CRAM and tannin), which had higher UV absorbance. The revealed variation of DOP in WWTP is beneficial to optimize the treatment processes to enhance the removal of DOP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据