4.8 Article

Characterizing the multidimensionality of microplastics across environmental compartments

期刊

WATER RESEARCH
卷 202, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2021.117429

关键词

Microplastics; Probability density functions; Size distribution; Risk assessment; Environment; Human health

资金

  1. Dutch Technology Foundation TTW [13940]
  2. KWR
  3. IMARES
  4. NVWA
  5. RIKILT
  6. Dutch Ministry of Infrastructure and the Environment
  7. Dutch Ministry of Health, Welfare and Sport
  8. Wageningen Food & Biobased Research
  9. STOWA
  10. RIWA
  11. Dutch water boards (BTO Joint Research Program)
  12. German Federal Environmental Foundation (DBU)

向作者/读者索取更多资源

Understanding the multidimensionality of microplastics is essential for realistic assessment of risks they pose. The study captures characteristics of over 60,000 individual microplastic particles as continuous distributions, revealing differences in distribution patterns among particles from different aquatic compartments. This suggests potential sources, removal or fragmentation processes, as well as toxicologically relevant dose metrics.
Understanding the multidimensionality of microplastics is essential for a realistic assessment of the risks these particles pose to the environment and human health. Here, we capture size, shape, area, polymer, volume and mass characteristics of >60,000 individual microplastic particles as continuous distributions. Particles originate from samples taken from different aquatic compartments, including surface water and sediments from the marine and freshwater environment, waste water effluents, and freshwater organisms. Data were obtained using state-ofthe-art FTIR-imaging, using the same automated imaging post-processing software. We introduce a workflow with two quality criteria that assure minimum data quality loss due to volumetric and filter area subsampling. We find that probability density functions (PDFs) for particle length follow power law distributions, with median slopes ranging from 2.2 for marine surface water to 3.1 for biota samples, and that these slopes were compartment-specific. Polymer-specific PDFs for particle length demonstrated significant differences in slopes among polymers, hinting at polymer specific sources, removal or fragmentation processes. Furthermore, we provide PDFs for particle width, width to length ratio, area, specific surface area, volume and mass distributions and propose how these can represent the full diversity of toxicologically relevant dose metrics required for the assessment of microplastic risks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据