4.8 Article

Development of a novel partial nitrification, fermentation-based double denitrification bioprocess (PN-F-Double/DN) to simultaneous treatment of mature landfill leachate and waste activated sludge

期刊

WATER RESEARCH
卷 203, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2021.117540

关键词

Mature landfill leachate; WAS; Fermentation; Intracellular carbon storage; Endogenous denitrification

资金

  1. National Key R&D Program of China [2018YFC0406200]
  2. China Postdoctoral Science Foundation [2020TQ0301, 2021M690146]

向作者/读者索取更多资源

A novel fermentation-based double denitrification bioprocess successfully combined fermentation and denitrification, treating high ammonia wastewater efficiently with nitrogen removal and sludge reduction.
Introducing fermentation technology into sewage treatment is a sustainable development concept, but future application still faces many challenges. A novel partial nitrification, fermentation-based double denitrification biopmcess (PN-F-Double/DN) was achieved in three separated SBR type reactors, simultaneously treating high ammonia (1766.6 mg/L) mature landfill leachate and external waste activated sludge (WAS, MLSS = 20.6 g/L). Firstly, NH4+-N was oxidized to NO2--N in partial nitrification reactor (PN-SBR), with nitrite accumulation ratio (NAR) of 96.5%. Next, the PN-SBR effluent (NO2--N = 1529.8 mg/L) coupled with the WAS were introduced to an anoxic reactor for integrated fermentation-denitrification (IFD-SBR). The occurrence of fermentation was mainly attributed to free nitrous acid (FNA, nitrite protonate form) promoting the splitting decomposition of sludge spatial configuration and interfacial forces. The released volatile fatty acids (VFAs) were utilized in situ during the denitrification process (NO2--N -> N-2), obtaining 0.6 kg/m(3).d nitrogen removal rate and 3.3 kg/m(3).d sludge reduction rate. Finally, undesirable fermentation by-products from IFD-SBR (NH4+-N = 119.2 mg/L) were further removed in the endogenous post-denitrification reactor (EPD-SBR) through operational strategy of anaerobic/aerobic/anoxic by residual VFAs as the carbon source. In the EPD-SBR, Defluviicoccus (0.9%) and Candidatus Competibacter (5.8%) dominated carbon source storage and nitrogen removal, acting as a typical denitrifying glycogen-accumulating organism (DGAO), with an intracellular carbon storage efficiency of 83.1% and nitrogen removal contribution of 93.7%. After 200 days of operation, the PN-F-Double/DN process provided effluent containing, on average, 1.86 mg/L NH4+-N and 5.5 mg/L NOx--N, with 98.5% TN removal. Compared with traditional bioprocesses, PN-F-Double/DN allowed up to 25% saving in aeration energy consumption, 100% decrease in carbon source demand, and achieve 46.1% external WAS reduction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据