4.8 Article

Achieving superior nitrogen removal performance in low-strength ammonium wastewater treatment by cultivating concentrated, highly dispersive, and easily settleable granule sludge in a one-stage partial nitritation/anammox-HAP reactor

期刊

WATER RESEARCH
卷 200, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2021.117217

关键词

Anammox; Partial nitritation; One-stage; Low-strength ammonium wastewater; Hydroxyapatite

资金

  1. Japan Society for the Promotion of Science (JSPS) KAKENHI [19H01160]
  2. China Scholarship Council [201606460046]
  3. Grants-in-Aid for Scientific Research [19H01160] Funding Source: KAKEN

向作者/读者索取更多资源

The application of granule sludge in a one-stage partial nitritation/anammox (PNA) reactor achieved high nitrogen removal rate in low-strength ammonium wastewater (LSAWW) treatment. Addition of hydroxyapatite (HAP) increased the density of granules, improved settlability of sludge and made high biomass achievable in a short HRT.
In low-strength ammonium wastewater (LSAWW) treatment, the application of anammox-based process is still limited due to extreme instability and the poor nitrogen removal rate (NRR). In this work, granule sludge, comprised of functional microbes and hydroxyapatite (HAP), was inoculated and cultivated in a one-stage partial nitritation/anammox (PNA) reactor for LSAWW treatment. The results showed that at the hydraulic retention time (HRT) of about 1.0 h and the influent ammonium concentration of 63.0 mg/L, an average NRR of 1.28 kg/m(3)/d was achieved, which far exceeds that reported in similar studies. The main inorganic matter in sludge was identified as HAP through the X-ray diffractometer and Raman spectrum analysis. The tomographic images of wet granule created through computed tomography revealed that the interior density of the granules was uneven and many hollow structures existed in the granule interior. Combined with the Scanning Electron Microscope images of dry granules, it was found that the granules were comprised of hollow sub-granules. Since the biomass in the reactor increased with no obvious increase in the granule size, it was inferred that the hollow sub-granules had fragile connections with each other and that granules division occurred easily, resulting in the high dispersity of sludge. Florescence in situ hybridization results also showed that the ammonium-oxidizing bacteria and anammox bacteria were mainly distributed in the two sides of the sub-granule shells and the HAP in the middle. This kind of structure raised the density of granules and improved the settleability of sludge, which made it possible to achieve a high biomass in the reactor at a short HRT. Therefore, the sludge formed in the reactor was concentrated, highly dispersive and easily settleable. These factors appear to be crucial for achieving the desired nitrogen removal performance. This study marks a big leap in LSAWW treatment through the one-stage PNA process and has great potential in actual applications. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据