4.8 Article

Challenges of THP-AD centrate treatment using partial nitritation-anammox (PN/A)-inhibition, biomass washout, low alkalinity, recalcitrant and more

期刊

WATER RESEARCH
卷 203, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2021.117555

关键词

THP-AD centrate; Partial nitritation (PN); Ammonium oxidizing bacteria (AOB); Anammox; Recalcitrant organics; Denitrification

资金

  1. Public Utilities Board (PUB) of Singapore

向作者/读者索取更多资源

This study developed a cost-effective partial nitritation-anammox process to address the challenges in treating THP-AD centrate, achieving a nitrogen removal rate of 0.55 kg N/m3/d with mitigation strategies. However, issues such as sludge washout, AOB inhibition, and declining anammox activity were observed at higher THP-AD centrate concentrations. The study provides insights for developing an energy-saving treatment process for THP-AD centrate.
The centrate produced from a thermal hydrolysis pretreatment coupled anaerobic digestion (THP-AD) system is generally characterized by high concentrations of ammonium and recalcitrant organics. In this study, a costeffective partial nitritation-anammox (PN/A) process was developed to evaluate the potential challenges in THP-AD centrate treatment. The results show ammonium oxidizing bacteria (AOB) and anammox bacteria were seriously inhibited by THP-AD centrate, while long-term acclimation together with aeration optimization can mitigate such inhibition. A nitrogen removal rate (NRR) of 0.55 kg N/m3/d was obtained and maintained with 60% THP-AD centrate as feed. However, 100% THP-AD centrate caused sludge wash-out from PN reactor due to excessive polymer and high solids in influent. The alkalinity deficit also reduced the AOB activity. Moreover, anammox activity and overall NRR also declined (to 0.37 kg N/m3/d). The organics transformation mainly occurred in PN reactor with very low removal efficiency due to their recalcitrant characteristics. The humic acidlike, fulvic acid-like substances and building blocks were revealed as the major organic compounds in THP-AD centrate (51.5-53.8% TOC), which likely contributed to the recalcitrant. Nitrosomonas and Candidatus Brocadia were the major AOB and anammox bacteria in the PN and anammox reactors respectively. With the increased THP-AD centrate proportion in the feed, the abundance of both population declined. Interestingly, Denitratisoma, being the major denitrifying bacteria in anammox reactor, had relatively stable abundance (7.0-7.9%) when THP-AD centrate was improved from 3 and 100%, suggesting the inhibition on anammox bacteria was not due to the overgrowth of denitrifying microorganism despite the high organics loading rate. Overall, this study provides a guide to develop the energy-saving PN/A process for THP-AD centrate treatment by pointing out potential challenges and mitigating strategies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据