4.8 Article

Degradation of phosphonates in Co(II)/peroxymonosulfate process: Performance and mechanism

期刊

WATER RESEARCH
卷 202, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2021.117397

关键词

Phosphonate; Peroxymonosulfate; Advanced oxidation processes; Co(II)-PMS complex; Selectivity

资金

  1. National Natural Science Foundation of China [21925602]
  2. Natural Science Foundation of Jiangsu Province [BK20200504]

向作者/读者索取更多资源

The mineralization of phosphonates is crucial for protecting the aquatic environment, and the effectiveness of the Co(II)/PMS process in wastewater treatment depends on solution pH and coordination with Co(II). The study reveals the reactive species in the Co(II)-PMS system and the degradation mechanism of HEDP.
The increased release of phosphonates to natural waters causes global concern due to their potential threat to the aquatic environment. It is curial to mineralize phosphonates to orthophosphate (PO43-) before they are thoroughly removed from wastewater via conventional biological treatment. In this study, we systematically investigated the performance and mechanism of degradation of phosphonates in Co(II)-triggered peroxymonosulfate (PMS) activation process. The degradation efficiency of various phosphonates is highly dependent on their coordination with Co(II). Using 1-hydroxyethane 1,1-diphosphonic acid (HEDP) as a target pollutant, the Co(II)/PMS process is effective in a broad solution pH range from 5.0 to 10.0. Multiple experimental results imply that Co(II)-PMS complex is the primary reactive species, while hydroxyl radicals (HO center dot), sulfate radicals (SO4 center dot- ), singlet oxygen (O-1(2)) and Co(III) play as the secondary reactive species for the degradation of HEDP. The presence of Cl-, HCO3-, and natural organic matters (NOM) inhibits the degradation of HEDP. However, in real water samples, the selectivity and efficiency for HEDP removal in the Co(II)/PMS process are higher than that in free radicals-mediated advanced oxidation processes. This study not only sheds new lights on the mechanism of Co(II)-triggered PMS activation process, but also provides feasible technology for the degradation of phosphonates in wastewater.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据