4.8 Article

Removal of micropollutants and biological effects by conventional and intensified constructed wetlands treating municipal wastewater

期刊

WATER RESEARCH
卷 201, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2021.117349

关键词

Effect-based method; Effect-based trigger values; Emerging organic contaminant; In vitro bioassay; Nature-based solution; Treatment wetland

资金

  1. Helmholtz Interdisciplinary Graduated School for Environmental Research (HIGRADE)
  2. UFZ
  3. Helmholtz Association

向作者/读者索取更多资源

The study demonstrated that intensified treatment wetlands have higher removal efficiency for micropollutants and mixture effects compared to conventional (non-aerated) HF wetlands, and in some cases, even outperformed the WWTP. The two-stage wetland system showed the most significant removal efficacy for all biological effects.
Seven treatment wetlands and a municipal wastewater treatment plant (WWTP) were weekly monitored over the course of one year for removal of conventional wastewater parameters, selected micropollutants (caffeine, ibuprofen, naproxen, benzotriazole, diclofenac, acesulfame, and carbamazepine) and biological effects. The treatment wetland designs investigated include a horizontal subsurface flow (HF) wetland and a variety of wetlands with intensification (aeration, two-stages, or reciprocating flow). Complementary to the common approach of analyzing individual chemicals, in vitro bioassays can detect the toxicity of a mixture of known and unknown components given in a water sample. A panel of five in vitro cell-based reporter gene bioassays was selected to cover environmentally relevant endpoints (AhR: indicative of activation of the aryl hydrocarbon receptor; PPAR gamma: binding to the peroxisome proliferator-activated receptor gamma; ER alpha: activation of the estrogen receptor alpha; GR: activation of the glucocorticoid receptor; oxidative stress response). While carbamazepine was persistent in the intensified treatment wetlands, mean monthly mass removal of up to 51% was achieved in the HF wetland. The two-stage wetland system showed highest removal efficacy for all biological effects (91% to >99%). The removal efficacy for biological effects ranged from 56% to 77% for the HF wetland and 60% to 99% for the WWTP. Bioanalytical equivalent concentrations (BEQs) for AhR, PPAR gamma, and oxidative stress response were often below the recommended effect-based trigger (EBT) values for surface water, indicating the great benefit for using nature-based solutions for water treatment. Intensified treatment wetlands remove both individual micropollutants and mixture effects more efficiently than conventional (non-aerated) HF wetlands, and in some cases, the WWTP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据