4.7 Article

Application of cold plasma technology in the food industry and its combination with other emerging technologies

期刊

TRENDS IN FOOD SCIENCE & TECHNOLOGY
卷 114, 期 -, 页码 355-371

出版社

ELSEVIER SCIENCE LONDON
DOI: 10.1016/j.tifs.2021.06.004

关键词

Cold plasma; Pathogenic bacteria; Fungi; Food products; Sanitation

向作者/读者索取更多资源

Cold plasma technology is an effective nonthermal method for enhancing antimicrobial activity and improving food quality. Combining cold plasma with other emerging technologies like nanotechnology, pulsed electric field, pulsed light, and ultrasound is gaining attention for ensuring food safety and quality improvements. However, the high initial investment costs of cold plasma need to be considered for practical applications in the food industry.
Background: The search for preservation methods that can be used as alternatives to heat treatment is a significant issue in food quality. Utilization of plasma technology, a useful nonthermal technique, is encouraged in the food industry because of its effectiveness in preserving the natural aroma and flavor and antimicrobial activity. Scope and approach: The cold plasma (CP) technique is used for food processing for enhancing antimicrobial activity, structural modification, decontamination of surfaces, and disinfection of food-processing instruments. Currently, a combination of CP with other promising approaches, such as nanotechnology applications, including nanofiber, nanoemulsion, nanoparticles, and nanoencapsulation, and emerging nonthermal technologies, including pulsed electric field (PEF), pulsed light (PL), and ultrasound, is gaining increased attention. In addition to its many advantages, CP is a low-cost method that can be an alternative to heat-based techniques used for the processing of food products. Therefore, application of CP technology in the food industry has been described in this review. Key findings and conclusions: Demand for raw or non-heat-treated foods is increasing due to factors, such as the preference of consumers for healthy foods and the development of consumer awareness. However, plasma technology can be used to improve microbial quality and prevent rapid physical, chemical, and sensory changes. Studies have shown that CP application is effective in offering higher-quality products for consumption by extending the shelf life of foods. Positive results have been achieved in terms of both quality and microbial activity in different food groups with plasma technology. In addition to recently published articles, the combined hurdle effect of CP with other emerging novel technologies such as nanotechnology, pulsed electric field (PEF), pulsed light (PL), and ultrasound processing on food or food packaging materials could be further studied and used to ensure food safety. However, the high initial investment costs for CP need to be considered.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据