4.6 Article

Efficient prediction of concentrating solar power plant productivity using data clustering

期刊

SOLAR ENERGY
卷 224, 期 -, 页码 730-741

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.solener.2021.06.002

关键词

Concentrating solar power (CSP); Thermal energy storage; Data clustering; Dispatch optimization

资金

  1. U.S. Department of Energy (DOE) [DE-AC36-08GO28308]
  2. U.S. Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) Solar Energy Technologies Office [DE-EE00030338]

向作者/读者索取更多资源

This paper proposes a methodology to reduce the computational burden associated with simulation of electricity yield and revenue for CSP plants over a single-or multiyear period by employing data-clustering techniques to select a small number of limited-duration time blocks for simulation that can reproduce generation and revenue.
Concentrating solar power (CSP) plants convert solar energy to electricity and can be deployed with a thermal storage capability to shift electricity generation from time periods with available solar resource to those with high electricity demand or electricity price. Rigorous optimization of plant design and operational strategies can improve the market-competitiveness and commercial viability; however, such optimization may require hundreds of annual performance simulations, each of which can be computationally expensive when including considerations such as optimization of dispatch scheduling, sub-hourly time resolution, and stochastic effects due to uncertain weather or electricity price forecasts. This paper proposes a methodology to reduce the computational burden associated with simulation of electricity yield and revenue for CSP plants over a single-or multiyear period. Data-clustering techniques are employed to select a small number of limited-duration time blocks for simulation that, when appropriately weighted, can reproduce generation and revenue over a single year or within each year of a multi-year period. After selection of appropriate data features and weighting factors defining similarity between time-series profiles, the methodology captured annual revenue within 2.3%, 1.7%, or 1.2% using simulation of 10, 30, or 50 three-day exemplar time blocks, respectively, for each of three single-year location/weather/market scenarios and five plant configurations ranging from low to high solar multiple and storage capacity. When applied to multi-year datasets, the proposed methodology can capture inter-year variability that is unavailable from typical meteorological year (TMY) datasets while simultaneously requiring simulation of less than a single year of data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据