4.7 Article

Organic carbon storage potential of cropland topsoils in East China: Indispensable roles of cropping systems and soil managements

期刊

SOIL & TILLAGE RESEARCH
卷 211, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.still.2021.105052

关键词

Mixture duster models; SOC storage potential; Carbon landscape systems; Soil management practices; Random forests

资金

  1. National Key Research and Development Program of China [2016YFD0200802, 2018YFD0200502]
  2. Key Research and Development Program of Zhejiang Province, China [2020C02023]

向作者/读者索取更多资源

This study proposes a data-driven approach combining mixture clustering and Random Forest models to estimate the SOC storage potential of cropland topsoil in East China. The results show that cropping systems and soil management practices are the key factors influencing SOC storage potential, and human-induced factors can impact potential for SOC sequestration.
Soil organic carbon (SOC) is receiving increasing attention due to its large storage potential in global carbon cycles and its great importance to soil fertility, agricultural production, and ecosystem services. The increases of SOC storage and reliable estimation of its potential are essential for evaluating the soil sustainability and climate change adaptation under intensive cultivation. In this work, a data-driven approach combining mixture clustering and Random Forest models was proposed to estimate the SOC storage potential of cropland topsoil and its controlling factors in East China. The carbon landscapes systems (CLSs) were delineated using a mixture clustering model by combining the climatic condition, soil properties, cropping systems, and soil management practices. The SOC storage potentials with 95 % confidence intervals at 250 m spatial resolution were estimated as the difference between the current SOC stock and empirically maximum SOC stock at basic (75 %), intermediate (85 %), and ambitious (95 %) expectation objectives for each CLS. The SOC storage potential increased with the increasing of expectation objective settings, with the averaged levels of 13.1, 20.8, and 35.5 t C ha(-1) at 75 %, 85 %, and 95 % percentile objectives, respectively. The variable importance from Random Forest indicated that the cropping systems and soil management practices were the unignorable factors controlling the SOC storage potential beyond the climatic conditions and soil properties. Moreover, the shifts of human-induced controlling factors, e.g., cropping systems, also indicated their capability of SOC sequestration potential for partly achieving the 4p1000 initiative (annual growth rate of 0.4 % carbon stocks in the first 30 cm of topsoil). The currently optimal soil management practices for achieving the SOC sequestration potential was the combination of rice-based cropping systems, straw return, and organic fertilizer applied. The data-driven approach coupling with CLSs improved our understanding of the controlling factors on SOC storage potential at regional level with homogenous conditions, enabling evidence-based decision making in promoting carbon sequestration by adopting locally feasible soil management practices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据