4.8 Article

Defect-Engineered Nanozyme-Linked Receptors

期刊

SMALL
卷 17, 期 33, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202101907

关键词

carbon nitrides; chemical tongues; defect engineering; nanozyme-linked receptors; nanozymes

资金

  1. National Natural Science Foundation of China [22074049, 22004042]
  2. Fundamental Research Funds for the Central Universities [CCNU20QN007, CCNU20TS013]
  3. Program of Introducing Talents of Discipline to Universities of China (111 program) [B17019]

向作者/读者索取更多资源

Defect-engineered carbon nitrides (DCN) are utilized as nanozyme-linked receptors (NLRs) to achieve higher activity and more functions, showing the contributions of cascade effect and electronic effect in signal transduction. This work not only offers great promise for defect engineering in nanozymes, but also contributes to the design of artificial ELRs by utilizing cyano defects and groups as receptors, providing a reference for pattern recognition of metal ions through NLRs.
Though nanozymes are successfully applied in various areas, the increasing demands facilitate the exploitation of nanozymes possessing higher activity and more functions. Natural enzyme-linked receptors (ELRs) are critical components for signal transductions in vivo by expressing activity variations after binding with ligands. Inspired by this, the defect-engineered carbon nitrides (DCN) are reported to serve as nanozyme-linked receptors (NLRs). For one thing, cyano defects increase the enzyme-like activity by a factor of 109.5. For another, DCN-based NLRs are constructed by employing cyano groups as receptors, and variable outputs are ensued upon the addition of ion ligands. Significantly, both the cascade effect and electronic effect are demonstrated to contribute to this phenomenon. Finally, NLRs are used for pattern recognition of metal ions, indicating the signal transduction ability of NLRs as well. This work not only provides great promise of defect engineering in nanozymes, but also contributes to the design of artificial ELRs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据